Abstract

The paper investigates the issues of solvability and spectral properties of local and nonlocal problems for the fractional order diffusion-wave equation. The regular and strong solvability to problems stated in the domains, both with characteristic and non-characteristic boundaries are proved. Unambiguous solvability is established and theorems on the existence of eigenvalues or the Volterra property of the problems under consideration are proved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.