Abstract

We study the spectral properties of a large class of compact flat Riemannian manifolds of dimension 4, namely, those whose corresponding Bieberbach groups have the canonical lattice as translation lattice. By using the explicit expression of the heat trace of the Laplacian acting on p-forms, we determine all p-isospectral and L-isospectral pairs and we show that in this class of manifolds, isospectrality on functions and isospectrality on p-forms for all values of p are equivalent to each other. The list shows for any p, 1 ≤ p ≤ 3, many p-isospectral pairs that are not isospectral on functions and have different lengths of closed geodesics. We also determine all length isospectral pairs (i.e. with the same length multiplicities), showing that there are two weak length isospectral pairs that are not length isospectral, and many pairs, p-isospectral for all p and not length isospectral.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.