Abstract

For a real number $\beta>1$, Erdős, Joo and Komornik study distances between consecutive points in the set $X^m(\beta)=\bigl\{\sum_{j=0}^n a_j \beta^j : n\in\mathbb N,\,a_j\in\{0,1,\dots,m\}\bigr\}$. Pisot numbers play a crucial role for the properties of $X^m(\beta)$. Following the work of Zaimi, who considered $X^m(\gamma)$ with $\gamma\in\mathbb{C}\setminus\mathbb{R}$ and $|\gamma|>1$, we show that for any non-real $\gamma$ and $m < |\gamma|^2-1$, the set $X^m(\gamma)$ is not relatively dense in the complex plane. Then we focus on complex Pisot units with a positive real conjugate $\gamma'$ and $m > |\gamma|^2-1$. If the number $1/\gamma'$ satisfies Property (F), we deduce that $X^m(\gamma)$ is uniformly discrete and relatively dense, i.e., $X^m(\gamma)$ is a Delone set. Moreover, we present an algorithm for determining two parameters of the Delone set $X^m(\gamma)$ which are analogous to minimal and maximal distances in the real case $X^m(\beta)$. For $\gamma$ satisfying $\gamma^3 + \gamma^2 + \gamma - 1 = 0$, explicit formulas for the two parameters are given.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.