Abstract
Close to a black hole, the density of the sub-Keplerian accreting matter becomes higher compared to a spherical flow due to the presence of a centrifugal barrier independent of whether or not a standing shock actually forms. This hot dense flow intercepts soft photons from a cold Keplerian disk and reprocesses them to form high energy X-rays and gamma rays. We study the spectral properties of various models of accretion disks where a Keplerian disk on the equatorial plane may or may not be flanked by a sub-Keplerian disk and the sub-Keplerian flow may or may not possess standing shocks. From comparison with the spectra, we believe that the observed properties could be explained better when both the components (Keplerian and sub-Keplerian) are simultaneously present close to a black hole, even though the sub-Keplerian halo component may have been produced out of the Keplerian disk itself at larger radii. We are able to understand soft and hard states of black hole candidates, properties of X-ray novae outbursts, and quasi-periodic oscillations of black hole candidates using these two component models. We fit spectra of X-ray novae GS1124-68 and GS2000+25 and satisfactorily reproduce the light curves of these objects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.