Abstract

We analyze the spectral properties of a resonator coupled to a superconducting single electron transistor (SSET) close to the Josephson quasiparticle resonance. Focussing on the regime where the resonator is driven into a limit-cycle state by the SSET, we investigate the behavior of the resonator linewidth and the energy relaxation rate which control the widths of the main features in the resonator spectra. We find that the linewidth becomes very narrow in the limit-cycle regime, where it is dominated by a slow phase diffusion process, as in a laser. The overall phase diffusion rate is determined by a combination of direct phase diffusion and the effect of amplitude fluctuations which affect the phase because the resonator frequency is amplitude dependent. For sufficiently strong couplings we find that a regime emerges where the phase diffusion is no longer minimized when the average resonator energy is maximized. Finally we show that the current noise of the SSET provides a way of measuring both the linewidth and energy relaxation rate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.