Abstract

Based on the extended Huygens–Fresnel principle, we introduced the analytic expression of a random electromagnetic partially coherent flat-topped (PCFT) vortex beam propagating in Kolmogorov atmospheric turbulence. The spectral properties of the random electromagnetic PCFT vortex beam are explored by using the unified theory of coherence and polarization. It is demonstrated by numerical results and found that after propagating through turbulent atmosphere, the spectral density, the spectral degree of polarization as well as the spectral degree of coherence of the random electromagnetic PCFT vortex beam vary. The variations of the spectral properties depend closely on the strength of atmospheric turbulence and the properties of the source beam, i.e. the topological charges, the order of flatness, the waist width as well as the initial spatial coherence. In addition, the distributions of the spectral density and the spectral degree of polarization undergo several stages of evolution and finally tend to Gaussian profile at the receiver plane. Some possible explanations have also been given for these interesting physical phenomena.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call