Abstract
We study the spectrum of a linear Oseen-type operator which arises from equations of motion of a viscous incompressible fluid in the exterior of a rotating compact body. We prove that the essential spectrum consists of an infinite set of overlapping parabolic regions in the left half-plane of the complex plane. The full spectrum coincides with the essential and continuous spectrum if the operator is considered in the whole 3D space. Our approach is based on the Fourier transform in the whole space and the transfer of the results to the exterior domain.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.