Abstract

A laser flash photolysis study of the spectral properties and beta-scission reactions of a series of ring-substituted cumyloxyl radicals has been carried out. All cumyloxyl radicals display a broad absorption band in the visible region of the spectrum, which decays on the microsecond time scale, leading to a strong increase in absorption in the UV region of the spectrum, which is attributed to the corresponding acetophenone formed after beta-scission of the cumyloxyl radicals. The position of the visible absorption band is red-shifted by the presence of electron-donating ring substituents, while a blue-shift is observed in the presence of electron-withdrawing ring substituents, suggesting that + R ring substituents promote charge separation in the excited cumyloxyl radical through stabilization of the partial positive charge on the aromatic ring of an incipient radical zwitterion. Along this line, an excellent Hammett-type correlation between the experimentally measured energies at the visible absorption maxima of the cumyloxyl radicals and sigma(+) substituent constants is obtained. A red-shift is also observed on going from MeCN to MeCN/H(2)O for all cumyloxyl radicals, pointing toward a specific effect of water. The ring substitution does not influence to a significant extent the rate constants for beta-scission of the cumyloxyl radicals, which varies between 7.1 x 10(5) and 1.1 x 10(6) s(-1), a result that suggests that cumyloxyl radical beta-scission is not governed by the stability of the resulting acetophenone. Finally, k(beta) increases on going from MeCN to the more polar MeCN/H(2)O 1:1 for all cumyloxyl radicals, an observation that reflects the increased stabilization of the transition state for beta-scission through increased solvation of the incipient acetophenone product.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call