Abstract
In this paper we investigate the one-dimensional Schrodinger operator L(q) with complex-valued periodic potential q when q∈L1[0,1] and qn=0 for n=0,−1,−2,..., where qn are the Fourier coefficients of q with respect to the system {ei2πnx}. We prove that the Bloch eigenvalues are (2πn+t)2 for n∈Z, t∈C and find explicit formulas for the Bloch functions. Then we consider the inverse problem for this operator.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.