Abstract

We needed effective and sustainable technologies for better microbiological control of crops, including Fusarium. However, photoluminescent UV-Vis methods are potential for diagnosing plant diseases with Fusarium. It has not been sufficiently studied despite the application of these methods for other biological researches. The excitation spectrum of the seeds during infection shifts to the shorter wavelength and a new maximum appears in the region λ ≈ 232 nm. The photoluminescence of infected seeds increases with excitation by radiation of wavelengths λe,1 = 232 nm, λe,2 = 362 nm and λe,3 = 424 nm by 1.33-3.14 times, and λe,3 = 424 nm-decreases by 1.1 times. Statistical moments μ3 and μ4 , asymmetry and kurtosis change only with short-wave excitation. When analyzing the decomposition of the frequency spectrum into Gaussian curves, the most informative ratio is the ratio of right-handed and left-handed Gaussians under excitation λe,2 = 362 nm and λe,3 = 424 nm. The ratios of their maxima change during infection by 1.36-3.2 times, and for excitation by radiation λe,2 , the frequency boundaries of Gaussians change. The results of measurements and calculations provide a basis for the development of a method and device for photoluminescence diagnostics of fusarium seeds in UV-Vis ranges.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.