Abstract

This work provides a comprehensive investigation on the spectral phonon properties in graphene nanoribbons (GNRs) by the normal mode decomposition (NMD) method, considering the effects of edge chirality, width, and temperature. We find that the edge chirality has no significant effect on the phonon relaxation time but has a large influence to the phonon group velocity. As a result, the thermal conductivity of around 707W/(mK) in the 4.26nm-wide zigzag GNR at room temperature is higher than that of 467W/(mK) in the armchair GNR with the same width. As the width decreases or the temperature increases, the thermal conductivity reduces significantly due to the decreasing relaxation times. Good agreement is achieved between the thermal conductivities predicted from the Green–Kubo method and the NMD method. We find that optical phonons dominate the thermal transport in the GNRs while the relative contribution of acoustic phonons to the thermal conductivity is only 10.1% and 13% in the zigzag GNR and the armchair GNR, respectively. Interestingly, the ZA mode is found to contribute only 1–5% to the total thermal transport in GNRs, being much lower than that of 30–70% in single layer graphene.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call