Abstract

Deformation twinning is critical to understanding and predicting the heterogenous deformation of many important material systems, e.g., hexagonal metals. In this work, we report a Fast-Fourier-Transform (FFT) based spectral phase-field method (PFM) model of deformation twinning and plasticity by directly incorporating the spectral FFT elasto-viscoplastic formulation, which allows two-way coupling between morphological evolution of deformation twinning and elastoplastic deformation. We verify the model by studying the twinning morphology evolution and plastic deformation of Mg single crystals and comparing the results with existing experimental measurements. We then apply the model to investigate heterogeneous twinning nucleation, growth and propagation behaviors, including twin-twin interactions, double twinning, and twin-grain boundary interactions. This work not only provides useful insights into the underlying deformation twinning mechanisms in hexagonal crystals but also presents an efficient PFM model of deformation twinning and plasticity which is generally applicable to modelling and predicting morphological evolution of deformation twinning and its effects on elasto-plastic responses of polycrystalline materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.