Abstract
We show that if A is a spectrally bounded algebra, then all functions operate spectrally on A if and only if SpAx is finite for every x ∈ A. We also prove that if A is a commutative Q-l.m.c.a, then all functions operate spectrally on A if and only if A/RadA is algebraic. Furthermore, if A is a semi-simple commutative Q-l.m.c.a. which is a Baire space, all functions operate spectrally on A if and only if it is isomorphic to Cn for some n ∈ N. A structure result concerning semi-simple commutative complete m-convex algebras of countable dimension is also given.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.