Abstract

We introduce a translational and rotational invariant local representation for vector fields, which can be employed in the construction of machine-learning energy models of solids and molecules. This allows us to describe, on the same footing, the energy fluctuations due to the atomic motion, the longitudinal and transverse excitations of the vector field, and their mutual interplay. The formalism can then be applied to physical systems where the total energy is determined by a vector density, as in the case of magnetism. Our representation is constructed over the power spectrum of the combined angular momentum describing the local atomic positions and the vector field, and can be used in conjunction with different machine-learning schemes and data taken from accurate ab initio electronic structure theories. We demonstrate the descriptive power of our representation for a range of classical spin Hamiltonian and machine-learning algorithms. In particular, we construct energy models based on both linear Ridge regression, as in conventional spectral neighbour analysis potentials, and gaussian approximation. These are both built to represent a Heisenberg-type Hamiltonian including a longitudinal energy term and spin-lattice coupling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.