Abstract

We describe a simple but surprisingly effective technique of obtaining spectral multiplier results for abstract operators which satisfy the finite propagation speed property for the corresponding wave equation propagator. We show that, in this setting, spectral multipliers follow from resolvent or semigroup type estimates. The most notable point of the paper is that our approach is very flexible and can be applied even if the corresponding ambient space does not satisfy the doubling condition or if the semigroup generated by an operator is not uniformly bounded. As a corollary we obtain $$L^p$$ spectrum independence for several second order differential operators and recover some known results. Our examples include the Laplace–Belltrami operator on manifolds with ends and Schrodinger operators with strongly subcritical potentials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.