Abstract
Let $L$ be a homogeneous sublaplacian on a 2-step stratified Lie group $G$ of topological dimension $d$ and homogeneous dimension $Q$. By a theorem due to Christ and to Mauceri and Meda, an operator of the form $F(L)$ is bounded on $L^p$ for $1 < p < \infty$ if $F$ satisfies a scale-invariant smoothness condition of order $s > Q/2$. Under suitable assumptions on $G$ and $L$, here we show that a smoothness condition of order $s > d/2$ is sufficient. This extends to a larger class of 2-step groups the results for the Heisenberg and related groups by M\"uller and Stein and by Hebisch, and for the free group $N_{3,2}$ by M\"uller and the author.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.