Abstract
AbstractLet be the self-adjoint operator associated with the Dirichlet formwhere ϕ is a positive C2 function, dλϕ = ϕdλ and λ denotes Lebesgue measure on ℝd. We study the boundedness on Lp(λϕ) of spectral multipliers of . We prove that if ϕ grows or decays at most exponentially at infinity and satisfies a suitable ‘curvature condition’, then functions which are bounded and holomorphic in the intersection of a parabolic region and a sector and satisfy Mihlin-type conditions at infinity are spectral multipliers of Lp(λϕ). The parabolic region depends on ϕ, on p and on the infimum of the essential spectrum of the operator on L2(λϕ). The sector depends on the angle of holomorphy of the semigroup generated by on Lp(λϕ).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.