Abstract

Let $(X,d,\mu)$ be a metric measure space endowed with a distance $d$ and a nonnegative Borel doubling measure $\mu$. Let $L$ be a non-negative self-adjoint operator on $L^2(X)$. Assume that the semigroup $e^{-tL}$ generated by $L$ satisfies the Davies-Gaffney estimates. Let $H_L^p(X)$ be the Hardy space associated with $L$. We prove a Hormander-type spectral multiplier theorem for $L$ on $H_L^p(X)$ for $0 n(1/p - 1/2)$ where $n$ is the dimension of $X$. By interpolation, $m(L)$ is bounded on $H_L^p(X)$ for all $0 < p < \infty$ if $m$ is infinitely differentiable with suitable bounds on its derivatives. We also obtain a spectral multiplier theorem on $L^p$ spaces with appropriate weights in the reverse Holder class.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.