Abstract

This article reports modulation of intramolecular charge transfer (ICT) reaction of 2-methoxy-4-(N,N-dimethylamino)benzaldehyde (2-MDMABA) encapsulated within the cyclodextrin nanocavities investigated by steady state and time resolved measurements. The ICT emission, absent in bulk water, originates in the presence of α-, β- and γ-CD with the huge enhancement of local emission. From the Benesi–Hildebrand plot, the stoichiometry of the host–guest inclusion complex is found to be 1:1 for β- and γ-CD whereas 1:1 and 1:2 guest to host complexation occur at low and high concentration of α-CD, respectively. The association constants of the inclusion complexes have also been estimated from the Benesi–Hildebrand plot. The greater binding capability of 2-MDMABA with β-CD than that of other two CDs is further supplemented by time resolved study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.