Abstract

In this paper we study the numerical passage from the spatially homogeneous Boltzmann equation without cut-off to the Fokker-Planck-Landau equation in the so-called grazing collision limit. To this aim we derive a Fourier spectral method for the non cut-off Boltzmann equation in the spirit of [21,23]. We show that the kernel modes that define the spectral method have the correct grazing collision limit providing a consistent spectral method for the limiting Fokker-Planck-Landau equation. In particular, for small values of the scattering angle, we derive an approximate formula for the kernel modes of the non cut-off Boltzmann equation which, similarly to the Fokker-Planck-Landau case, can be computed with a fast algorithm. The uniform spectral accuracy of the method with respect to the grazing collision parameter is also proved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.