Abstract
In this paper, we investigate spectral method for mixed inhomogeneous boundary value problems in three dimensions. Some results on the three-dimensional Legendre approximation in Jacobi weighted Sobolev space are established, which improve and generalize the existing results, and play an important role in numerical solutions of partial differential equations. We also develop a lifting technique, with which we could handle mixed inhomogeneous boundary conditions easily. As examples of applications, spectral schemes are provided for three model problems with mixed inhomogeneous boundary conditions. The spectral accuracy in space of proposed algorithms is proved. Efficient implementations are presented. Numerical results demonstrate their high accuracy, and confirm the theoretical analysis well.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.