Abstract
The dynamics of physical systems that require high-dimensional representation can often be captured in a few meaningful degrees of freedom called collective variables (CVs). However, identifying CVs is challenging and constitutes a fundamental problem in physical chemistry. This problem is even more pronounced when CVs need to provide information about slow kinetics related to rare transitions between long-lived metastable states. To address this issue, we propose an unsupervised deep-learning method called spectral map. Our method constructs slow CVs by maximizing the spectral gap between slow and fast eigenvalues of a transition matrix estimated by an anisotropic diffusion kernel. We demonstrate our method in several high-dimensional reversible folding processes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.