Abstract

We present a method for tailoring the lasing spectrum of a Fabry-Perot laser through the introduction of a low density of weakly reflective features along the length of the optical cavity. Using a transfer-matrix approach, the positions of the features are obtained from a self-consistent solution of the corresponding inverse problem at first order in the effective index step introduced. Theoretical examples are given describing how a single-mode laser cavity and a two-color laser are designed. Experimental measurements show that the method enables the realization of single-mode semiconductor lasers with high spectral purity at a predetermined wavelength. We also demonstrate that cavities designed according to our first-order prescription are robust at larger values of the effective index step where effects at second order cannot be neglected.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call