Abstract

Absorption and resonant light-scattering spectra of nanoparticles (NPs) of silver, and their complexes with water-soluble Cu(II)-5,10,15,20-tetrakis(4-N-methylpyridinium)-porphyrin (CuTMpyP4) and Fe(II)-5,10,15,20-tetrakis(4-sulfonatophenyl)-porphyrin (FeTSPP) have been compared. It is shown that in the presence of cationic CuTMpyP4, the band of surface plasmon resonance in the absorption and resonant scattering spectra of silver NPs is shifted to the long-wavelength region that is associated with the agglomeration of the particles caused by the Coulomb attraction between the silver particles and the porphyrin molecules. Addition of anionic FeTSPP to the silver NP solution does not lead to any spectral changes. The observed effect of silver-NP association induced by the cationic porphyrin can be used to develop an optical method for the detection of nanoparticles in solutions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call