Abstract

We present a model to compute the linewidth in vertical-cavity surface-emitting lasers (VCSELs), by accounting for the 3-D structure of real devices. To this aim, we include the noise source in the field equations and treat both the noise and the structural characteristics by means of coupled-mode theory. In this way, we obtain an expression for the linewidth that is given as the standard relation, modified by two correction factors that account for spatial effects and modal dispersion of the resonator. In the numerical results, we study for oxide-confined VCSELs the transition from index to gain-guided regime, where the standard linewidth theory does not hold, and we give some guidelines for narrow-line emission devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.