Abstract

The instantaneous turbulent velocity field in a three-dimensional wall jet was estimated from the fluctuating wall pressure using a spectral linear stochastic estimation technique. The wall jet investigated issued from a long square channel with Reynolds number of 90,000. Two downstream positions in the intermediate field were examined, x/h=10 and x/h=20, owing to the rapid changes in wall jet development over this region. The results indicate that the passage of the large-scale structures cause large, coherent lateral sweeps of fluid across the entire span of the wall jet. These sweeps are caused by the passage of half horseshoe-like structures and appear to be responsible for the larger lateral development of this flow.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call