Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease characterized by its late diagnosis, poor prognosis and rapid development of drug resistance. Using the data-independent acquisition (DIA) technique, the authors applied a spectral library-based proteomic approach to analyze N-glycosylated peptides in human plasma, in the context of pancreatic cancer study. The authors extended the application of DIA to the quantification of N-glycosylated peptides enriched from plasma specimens from a clinically well-defined cohort that consists of patients with early stage PDAC, chronic pancreatitis and healthy subjects. The analytical platform was evaluated in light of its robustness for quantitative analysis of large-scale clinical specimens. The authors analysis indicated that the level of N-glycosylated peptides derived from galectin-3 binding proteins (LGALS3BP) were frequently elevated in plasma from PDAC patients, concurrent with the altered N-glycosylation of LGALS3BP observed in the tumor tissue. The glycosylation form of LGALS3BP influences its function in the galectin network, which profoundly involves in cancer progression, immune response and drug resistance. As one of the major binding ligands of galectin network, discovery of site specific N-glycosylation changes of LGALS3BP in association of PDAC may provide useful clues to facilitate cancer detection or phenotype stratification.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.