Abstract

We present results of spectral investigations of the Sco X-1 like Z-track sources Sco X-1, GX 349+2 and GX 17+2 based on Rossi-XTE observations using an extended accretion disk corona model. The results are compared with previous results for the Cyg X-2 like group: Cyg X-2, GX 340+0 and GX 5-1 and a general model for the Z-track sources proposed. On the normal branch, the Sco-like and Cyg-like sources are similar, the results indicating an increase of mass accretion rate Mdot between soft and hard apex, not as in the standard view that this increases around the Z. In the Cyg-like sources, increasing Mdot causes the neutron star temperature kT to increase from ~1 to ~2 keV. At the lower kT, the radiation pressure is small, but at the higher kT, the emitted flux of the neutron star is several times super-Eddington and the high radiation pressure disrupts the inner disk launching the relativistic jets observed on the upper normal and horizontal branches. In the Sco-like sources, the main physical difference is the high kT of more than 2 keV on all parts of the Z-track suggesting that jets are always possible, even on the flaring branch. The flaring branch in the Cyg-like sources is associated with release of energy on the neutron star consistent with unstable nuclear burning. The Sco-like sources are very different as flaring appears to be a combination of unstable burning and an increase of Mdot which makes flaring much stronger. Analysis of 15 years or RXTE ASM data on all 6 classic Z-track sources shows the high rate and strength of flaring in the Sco-like sources suggesting that continual release of energy heats the neutron star causing the high kT. A Sco X-1 observation with unusually little flaring supports this. GX 17+2 appears to be transitional between the Cyg and Sco-like types. Our results do not support the suggestion that Cyg or Sco-like nature is determined by luminosity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.