Abstract

We propose a generalization of Becker's cloud model (BCM): an embedded cloud model (ECM)—for the inversion of the core of the Hα line spectrum of a plasma feature either lying high above the forest of chromospheric features or partly embedded in the outermost part of this forest. The fundamental assumption of the ECM is that the background light incident on the bottom of the feature from below is equal to the ensemble-average light at the same height. This light is related to the observed ensemble-average light via the radiative transfer that is described by the four parameters newly introduced in addition to the original four parameters of the BCM. Three of these new parameters are independently determined from the observed rms contrast profile of the ensemble. We use the constrained χ2 fitting technique to determine the five free parameters. We find that the ECM leads to the fairly good fitting of the observed line profiles and the reasonable inference of physical parameters in quiet regions where the BCM cannot. Our first application of this model to a quiet region of the Sun indicates that the model can produce the complete velocity map and Doppler width map of the region.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call