Abstract

This article examined the spectral interference by heavy metal on the spectral signal of moisture content of heavy metal contaminated soils. Soil samples were collected from an abandoned mine area, and the chemical analysis revealed extremely high contamination amount of copper (Cu), zinc (Zn), arsenic (As), cadmium (Cd), and lead (Pb). The mineralogical analysis showed that the spectral signature of the heavy metal contaminated soils was manifested by secondary minerals. Water content suppressed the spectral reflectance of the soil samples but increased the absorption depths. Although a regression model can predict moisture content using the magnitude of the water absorption feature, the accuracy was much lower when the heavy metal concentration was extremely high. It indicates that geochemical reactions between the heavy metal cation and iron oxide/clay minerals may have affected the spectral responses of the contaminated soils at the water absorption bands. Our model also showed that there was a shift of the absorption features of moisture content if the heavy metal contamination level went up. Unlike normal soils, the absorption features of clay minerals and ferric iron were not able to accurately predict moisture in highly contaminated soils. Given the fact that the spectral bands selected in this article were associated with water absorption, the findings from this article may only be useful to a drone-based low-altitude remote sensing of soil moisture content.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call