Abstract

Frequency-shifted solitons in a highly nonlinear photonic-crystal fiber (PCF) are shown to give rise to high-visibility interference fringes in PCF output spectra, indicating flat spectral phase profiles of individual solitons in the PCF output. This experimental finding, supported by numerical simulations, suggests a promising method of fiber-format pulse shaping and an attractive technology for few-cycle pulse synthesis through a coherent addition of frequency-shifted solitons generated in a highly nonlinear fiber.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call