Abstract

The inferior colliculus receives a massive convergence of inputs and in the mustached bat, this convergence leads to the creation of neurons in the inferior colliculus that integrate information across multiple frequency bands. These neurons are tuned to multiple frequency bands or are combination-sensitive; responding best to the combination of two signals of different frequency composition. The importance of combination-sensitive neurons in processing echolocation signals is well described, and it has been thought that combination sensitivity is a neural specialization for echolocation behaviors. Combination sensitivity and other response properties indicative of spectral integration have not been thoroughly examined in the inferior colliculus of non-echolocating mammals. In this study we tested the hypothesis that integration across frequencies occurs in the inferior colliculus of mice. We tested excitatory frequency response areas in the inferior colliculus of unanesthetized mice by varying the frequency of a single tone between 6 and 100 kHz. We then tested combination-sensitive responses by holding one tone at the unit’s best frequency, and varying the frequency and intensity of a second tone. Thirty-two percent of the neurons were tuned to multiple frequency bands, 16% showed combination-sensitive facilitation and another 12% showed combination-sensitive inhibition. These findings suggests that the neural mechanisms underlying processing of complex sounds in the inferior colliculus share some common features among mammals as different as the bat and the mouse.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call