Abstract
SUMMARY Although observation of gravity perturbations induced by earthquakes is possible, simulation of seismic wave propagation in a self-gravitating, rotating Earth model with 3-D heterogeneity is challenging due to the numerical complexities associated with the unbounded Poisson/Laplace equation that governs gravity perturbations. Therefore, gravity perturbations are generally omitted, and only the background gravity is taken into account using the so-called Cowling approximation. However, gravity perturbations may be significant for large earthquakes (Mw ≥ 6.0) and long-period responses. In this study, we develop a time-domain solver based on the spectral-infinite-element approach, which combines the spectral element method inside the Earth domain with a mapped-infinite-element method in the infinite space outside. This combination allows us to solve the complete, coupled momentum-gravitational equations in a fully discretized domain while accommodating complex 3-D Earth models. We compute displacement and gravity perturbations considering various Earth models, including Preliminary Reference Earth Model and S40RTS and conduct comprehensive benchmarks of our method against the spherical harmonics normal-mode approach and the direct radial integration method. Our 3-D simulations accommodate topography, bathymetry, rotation, ellipticity and oceans. Results show that our technique is accurate and stable for long simulations. Our method provides a new scope for incorporating earthquake-induced gravity perturbations into source and adjoint tomographic inversions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.