Abstract
Abstract. Bose, Anil Kumar, Krishnan and Madan (2010) showed that “Tiling implies Spectral” holds for a union of three intervals and the reverse implication was studied under certain restrictive hypotheses on the associated spectrum. In this paper, we reinvestigate the “Spectral implies Tiling” part of Fuglede's conjecture for the three interval case. We first show that the “Spectral implies Tiling” for two intervals follows from the simple fact that two distinct circles have at most two points of intersections. We then attempt this for the case of three intervals and except for one situation are able to prove “Spectral implies Tiling”. Finally, for the exceptional case, we show a connection to a problem of generalized Vandermonde varieties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.