Abstract

We prove that a dense subset of limit periodic operators have spectra which are homogeneous Cantor sets in the sense of Carleson. Moreover, by using work of Egorova, our examples have purely absolutely continuous spectrum. The construction is robust enough to extend the results to arbitrary p-adic hulls by using the dynamical formalism proposed by Avila. The approach uses Floquet theory to break up the spectra of periodic approximants in a carefully controlled manner to produce Cantor spectrum and to establish the lower bounds needed to prove homogeneity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.