Abstract

Persistent photochemical hole burned profiles are reported for the primary electron donor state P700 of the reaction center of PS I. The hole profiles at 1.6 K for a wide range of burn wavelengths (λB) are broad (FWHM∼310 cm(-1)) and for the 45:1 enriched particles studied exhibit no sharp zero-phonon hole feature coincident with λB. The λB hole profiles are analyzed using the theory of Hayes et al. [J Phys Chem 1986, 90: 4928] for hole burning in the presence of arbitrarily strong linear electron-phonon coupling. A Huang-Rhys factor S in the range 4-6 and a corresponding mean phonon frequency in the range 35-50 cm(-1) together with an inhomogeneous line broadening of∼100 cm(-1) are found to provide good agreement with experiment. The zero-point level of P700(*) is predicted to lie at∼710 nm at 1.6K with an absorption maximum at∼702 nm. The hole spectra are discussed in the context of the hole spectra for the primary electron donor states of PS II and purple bacteria.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.