Abstract
Gender (Male/Female) classification plays a primary vital role to develop a robust Automatic Tamil Speech Recognition (ASR) applications due to the diversity in the vocal tract of speakers. Various features including Formants (F1, F2, F3, F4), Zero Crossings, and Mel-Frequency Cepstral Coefficients (MFCCs) etc. have appeared in the literature especially for speech/signal classification/recognition. Recently Dalal et al. have proposed a feature called as Histogram of Oriented Gradients (HOG) for extracting feature from an image for efficient detection/classification of objects. We extend and apply the HOG for spectrogram of speech signal and hence called as Spectral Histogram of Oriented Gradients (SHOGs). The results of Tamil language male/female speaker classification using SHOGs features shows good improvement in the classification rate when compared to other features. The results of combination of various features with SHOGs are also promissing.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.