Abstract
Let F be a Riemannian foliation on a Riemannian manifold (M, g), with bundle-like metric g. Aside from the Laplacian △g associated to the metric g, there is another differential operator, the Jacobi operator J▽, which is a second order elliptic operator acting on sections of the normal bundle. Its spectrum is discrete as a consequence of the compactness of M. Hence one has two spectra, spec (M, g) = spectrum of △g (acting on functions), and spec (F, J▽) = spectrum of J▽. We discuss the following problem: Which geometric properties of a Riemannian foliation F on a Riemannian manifold (M, g) are determined by the two types of spectral invariants?
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.