Abstract

Markov expanding maps, a class of simple chaotic systems, are commonly used as models for chaotic dynamics, but existing numerical methods to study long-time statistical properties such as invariant measures have a poor trade-off between computational effort and accuracy. We develop a spectral Galerkin method for these maps' transfer operators, estimating statistical quantities using finite submatrices of the transfer operators' infinite Fourier or Chebyshev basis coefficient matrices. Rates of convergence of these estimates are obtained via quantitative bounds on the full transfer operator matrix entries; we find the method furnishes up to exponentially accurate estimates of statistical properties in only a polynomially large computational time. To implement these results we suggest and demonstrate two algorithms: a rigorously-validated algorithm, and a fast, more convenient adaptive algorithm. Using the first algorithm we prove rigorous bounds on some exemplar quantities that are substantially more accurate than previous. We show that the adaptive algorithm can produce double floating-point accuracy estimates in a fraction of a second on a personal computer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.