Abstract

In this paper, we develop two numerical methods, the Legendre-Galerkin method and the generalized Log orthogonal functions Galerkin method for numerically solving the fully nonlinear Monge-Ampère equation. Both methods are constructed based on the vanishing moment approach. To address both solution stability and computational efficiency, we propose a multiple-level framework for resolving discretization schemes. The mathematical justifications of the new approaches and the error estimates for the Legendre-Galerkin method are established. Numerical experiments validate the accuracy of our methods, and a comparative experiment demonstrates the advantage of Log orthogonal functions for problems with corner singularities. The results highlight that our methods have high-order accuracy and small computational cost.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.