Abstract

Neutrino oscillation experiments have entered the high-precision era in the last few years. The oscillation parameters, as a measure of the neutrino properties, are extracted from the energy-dependent oscillation probability function. Different types of nuclear dynamics deeply influence the determination of neutrino energies in neutrino oscillation experiments. As a consequence, a comprehensive understanding of various nuclear dynamics interprets the scenario behind the neutrino interaction with nucleus and nuclei. The initial ground-state structure of the target nucleus is categorized in one typical nuclear dynamics, and its realistic description is generally referred as the spectral function (SF). Implementing the SF for each target nucleus into the GENIE neutrino event generator is the preliminary step necessary to obtain a reliable determination of the kinematics of all detectable final-products from neutrino interactions. At the intermedium-range of neutrino energies (∼ 1 GeV), the kinematic energy reconstruction is the vastly used approach and consists in identifying final-products as coming from the charged-current quasi-elastic-like (CCQE-like) neutrino interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.