Abstract
A nonlocal spectral formulation of classic water waves is derived, and its connection to the classic water wave equations and the Dirichlet–Neumann operator is explored. The nonlocal spectral formulation is also extended to a two-fluid system with a free interface, from which long wave asymptotic reductions are obtained. Of particular interest is an asymptotically distinguished (2 + 1)-dimensional generalization of the intermediate long wave equation, which includes the Kadomtsev–Petviashvili equation and the Benjamin–Ono equation as limiting cases. Lump-type solutions to this (2 + 1)-dimensional ILW equation are obtained, and the speed versus amplitude relationship is shown to be linear in the shallow, intermediate, and deep water regimes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.