Abstract

We have studied the spectral fluorescence and polarization characteristics of Z,Z-bilirubin IXα, at room temperature in chloroform and in aqueous buffer medium, within an equilibrium complex with human serum albumin (HSA), and also under low temperature conditions (T = −100°C) in isobutyl alcohol. We have observed a bathochromic shift of the fluorescence spectra, which is most pronounced for the bilirubin-albumin complex. The following are considered as possible reasons for the observed dependence of the position of the fluorescence (fluorescence excitation) spectra on the excitation (detection) wavelength: structural and spectral differences between the chromophores making up the bilirubin molecule; conformational heterogeneity of the pigment in solution; a contribution to the fluorescence from molecules which have not completed the vibrational relaxation process; inhomogeneous orientational broadening of the levels; heterogeneity of the microenvironment of the chromophores in the protein matrix. We show that polarized fluorescence of bilirubin occurs at room temperature, due to the anomalously short fluorescence lifetime τ (picosecond or subpicosecond ranges). Despite such a short τ, the absorption and emission polarization spectra suggest the presence of intramolecular nonradiative singlet-singlet energy transfer when bilirubin is excited to high vibrational sublevels of the S1 state (degree of polarization p = 0.11–0.12). When fluorescence is excited on the long-wavelength slope of the absorption band, no transfer occurs: the degree of polarization (p = 0.46−0.47) is close to the limiting value (p = 0.50). We discuss the question of the role played by exciton interactions between chromophores in the bilirubin molecule when it is excited.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.