Abstract

We relate the spectral flow to the index for paths of selfadjoint Breuer–Fredholm operators affiliated to a semifinite von Neumann algebra, generalizing results of Robbin–Salamon and Pushnitski. Then we prove the vanishing of the von Neumann spectral flow for the tangential signature operator of a foliated manifold when the metric is varied. We conclude that the tangential signature of a foliated manifold with boundary does not depend on the metric. In the Appendix we reconsider integral formulas for the spectral flow of paths of bounded operators.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.