Abstract

We report on RXTE observations of the microquasar XTE J1550-564 during a ~70 day outburst in April-June 2000. We study the evolution of the PCA+HEXTE spectra over the outburst. The source transited from an initial Low Hard State (LS), to an Intermediate State (IS), and then back to the LS. The source shows an hysteresis effect similar to what is observed in other sources, favoring a common origin for the state transitions in soft X-ray transients. The first transition occurs at a ~ constant 2-200 keV flux, which probably indicates a change in the relative importance of the emitting media. The second transition is more likely driven by a drop in the mass accretion rate. In both LS, the spectra are characterized by the presence of a strong power-law tail (Compton corona) with a variable high energy cut-off. During the IS, the spectra show the presence of a ~0.8 keV thermal component (accretion disk). We discuss the apparently independent evolution of the two media, and show that right after the X-ray maximum on MJD 51662, the decrease of the source luminosity is due to a decrease of the power-law luminosity, at a constant disk luminosity. This, together with the detection of radio emission (with a spectrum typical of optically thin synchrotron emission), may suggest that the corona is ejected and further detected as a discrete radio ejection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.