Abstract
Abstract. A vector linear time series model is observed as the sum of a convolution of an unknown signal and an additive noise process. The main objective is the estimation or deconvolution of the signal when the spectra of the signal and noise processes are unknown. We prove the strong consistency of a class of nonparametric spectral estimators derived by maximizing a particular Gaussian likelihood function. We also study the mean square convergence of the finite‐sample deconvolution estimators as a function of the sample length T, the filter length M and the spectral bandwidth BT=LT/T.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.