Abstract
The concept of quasi boundary triples and Weyl functions from extension theory of symmetric operators in Hilbert spaces is developed further and spectral estimates for resolvent differences of two self-adjoint extensions in terms of general operator ideals are proved. The abstract results are applied to self-adjoint realizations of second order elliptic differential operators on bounded and exterior domains, and partial differential operators with δ-potentials supported on hypersurfaces are studied.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.