Abstract

The synthesis of binaural signals from spherical microphone array recordings has been recently proposed. The limited spatial resolution of the reproduced signal due to order-limited reproduction has been previously investigated perceptually, showing spatial perception ramifications, such as poor source localization and limited externalization. Furthermore, this spatial order limitation also has a detrimental effect on the frequency content of the signal and its perceived timbre, due to the rapid roll-off at high frequencies. In this paper, the underlying causes of this spectral roll-off are described mathematically and investigated numerically. A digital filter that equalizes the frequency spectrum of a low spatial order signal is introduced and evaluated. A comprehensive listening test was conducted to study the influence of the filter on the perception of the reproduced sound. Results indicate that the suggested filter is beneficial for restoring the timbral composition of order-truncated binaural signals, while conserving, and even improving, some spatial properties of the signal.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call