Abstract
BackgroundAccurate methods for extraction of meaningful patterns in high dimensional data have become increasingly important with the recent generation of data types containing measurements across thousands of variables. Principal components analysis (PCA) is a linear dimensionality reduction (DR) method that is unsupervised in that it relies only on the data; projections are calculated in Euclidean or a similar linear space and do not use tuning parameters for optimizing the fit to the data. However, relationships within sets of nonlinear data types, such as biological networks or images, are frequently mis-rendered into a low dimensional space by linear methods. Nonlinear methods, in contrast, attempt to model important aspects of the underlying data structure, often requiring parameter(s) fitting to the data type of interest. In many cases, the optimal parameter values vary when different classification algorithms are applied on the same rendered subspace, making the results of such methods highly dependent upon the type of classifier implemented.ResultsWe present the results of applying the spectral method of Lafon, a nonlinear DR method based on the weighted graph Laplacian, that minimizes the requirements for such parameter optimization for two biological data types. We demonstrate that it is successful in determining implicit ordering of brain slice image data and in classifying separate species in microarray data, as compared to two conventional linear methods and three nonlinear methods (one of which is an alternative spectral method). This spectral implementation is shown to provide more meaningful information, by preserving important relationships, than the methods of DR presented for comparison.Tuning parameter fitting is simple and is a general, rather than data type or experiment specific approach, for the two datasets analyzed here. Tuning parameter optimization is minimized in the DR step to each subsequent classification method, enabling the possibility of valid cross-experiment comparisons.ConclusionResults from the spectral method presented here exhibit the desirable properties of preserving meaningful nonlinear relationships in lower dimensional space and requiring minimal parameter fitting, providing a useful algorithm for purposes of visualization and classification across diverse datasets, a common challenge in systems biology.
Highlights
Accurate methods for extraction of meaningful patterns in high dimensional data have become increasingly important with the recent generation of data types containing measurements across thousands of variables
Tuning parameter optimization is minimized in the dimensionality reduction (DR) step to each subsequent classification method, enabling the possibility of valid cross-experiment comparisons
We examined the performance of a spectral method presented by Lafon [3,4] and have shown that it is successful in extracting meaningful structure in these two disparate data types, both having high dimensionality paired with low replication, with a method for calculating the tuning parameter that does not have to be varied across classifiers to achieve correct results
Summary
Accurate methods for extraction of meaningful patterns in high dimensional data have become increasingly important with the recent generation of data types containing measurements across thousands of variables. Where local data structures are not best summarized linearly (yet important to the interpretation of the experimental results), nonlinear methods that are kernel-based (e.g. kernel PCA) [6] and graph theoretic like spectral embedding [3,4,5,6,7,8,9,10,11,12,13,14,15,16,17] can be more appropriate These methods attempt to model the underlying manifold by fitting a kernel parameter to optimize performance (e.g. as assessed by some performance accuracy metric) [6]. Such parameter(s) modifications are optimized with a specific range of values that can be different for each classifier
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.