Abstract

In this paper, we compare a triangle based spectral element method (SEM) with the classical quadrangle based SEM and with a standard spectral method. For the sake of completeness, the triangle-SEM, making use of the Fekete points of the triangle, is first revisited. The requirement of a highly accurate quadrature rule is particularly emphasized. Then it is shown that the convergence properties of the triangle-SEM compare well with those of the classical SEM, by solving an elliptic equation with smooth (but steep) analytical solution. It is also proved numerically that the condition number grows significantly faster for triangles than for quadrilaterals. Finally, the attention is focused on a diffraction problem to show the high flexibility of the triangle-SEM.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.